A Novel Force Discrimination Assay Using Magnetic Beads

Chris Cole & Michael Malito

Nova Research, Inc., Alexandria, VA

Mohan Natesan*

Geo-Centers, Inc., Fort Washington, MD

(*Protiveris, Rockville, MD)

Rich Colton & Lloyd Whitman

Naval Research Laboratory, Washington, DC

Supported by the Joint Science & Technology Panel for Chemical & Biological Defense

email: richard.colton@nrl.navy.mil http://stm2.nrl.navy.mil

Quartz Sphere on AFM Cantilever

Using AFM to Measure Forces Between Single Molecules

G.U Lee, D.A. Kidwell & R.J. Colton, Langmuir 10, 354 (1994).

Molecular Recognition & Force Discrimination

• Range of measured rupture force

DNA	(20 mer in 100 mM NaCl)	750 +/- 120 pN
	(20 mer in 10 mM NaCl)	550 +/- 70 pN
Streptavidin-Biotin		200 - 300 pN
Antigen-Antibody		40 pN

- If force discrimination is implemented in a biosensor we anticipate **increased**
 - selectivity (fewer false positives and negatives)
 - sensitivity (lower background)

Immunobead Force Discrimination Assay

- Use paramagnetic beads as labels
- Magnetic field gradient removes nonspecifically bound beads
- Magnetic force eliminates background

Revolutionary Biosensor Technology

Three Detection Methods

Piezoresistive cantilever **FABS**

D.R. Baselt, *et al.*, *Proc. IEEE* **85**, 672 (1997)

Transparent substrate & optical microscope **FDB**

G.U. Lee, et al., Anal. Biochem. **287**, 261 (2000)

Magnetoresistive elements **BARC**

R.L. Edelstein, et al., Biosensors & Bioelectronics 14, 805 (2000)

FDB: Ovalbumin Detection on Transparent Substrates

G. Lee, et al., Analytical Biochemistry 287, 261 (2000)

Optical-based Force Discrimination Biosensor

magnetic beadtransparent substrateoptical microscope

Inverted optical microscope

Ultrafiltration membrane

Immunobead Force Discrimination Assay Magnetic Beads

PEI-PEG-Antibody Chemistry

Dynal, 2.8 μ m size beads containing, polymer coated mono-dispersed magnetic material (Fe₃O₄ and δ Fe₂O₃)

 $M \sim 12 \text{ emu/cm}^3$

SeraMag, 0.8 µm size beads containing a magnetite core coated with polymer

 $M \sim 38 \text{ emu/cm}^3$

Immunobead Force Discrimination Assay Results for Ovalbumin

- Detection sensitivity = 10 pg/mL
- Assay time = 25 min.

Immunobead Force Discrimination Assay Conclusions

- Sensitivity of our immunobead force discrimination assay is ~10³ X higher than conventional immunoassays such as ELISA
- Specificity is typically > 99%
- Response time is comparable to PCR-based instruments
- Better magnetic beads are needed to improve force discrimination between molecules